Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 347: 288-298, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29329011

ABSTRACT

The major pathway of pharmaceuticals from urban applications to urban surface waters is via wastewater treatment plants. Ozonation is able to remove pharmaceuticals from wastewater effluents. However, during that reaction, ozonation products are formed. Some ozonation products were found to be persistent and have adverse effect on the environment. Moving bed bio reactors (MBBRs) were tested for the removal of the ozonation products of macrolide antibiotics and diclofenac at two different concentration levels 1 µg/L and 10 µg/L in laboratory reactors. It was found that the MBBRs are capable of degrading these compounds without back-transformation into the parent compounds. However, reaction rate constants and the degradation kinetics varied for different compounds and different concentrations. Depending on compound and conditions, the degradation reaction kinetics was found to follow either i) zero order ii) first order or iii) lag phase succeeded by first order. The study has proven that MBBRs have the potential to be efficient in polishing post ozonation treatment.


Subject(s)
Bioreactors , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Biofilms , Diclofenac/chemistry , Laboratories , Macrolides/chemistry , Oxides/chemistry , Oxides/metabolism , Waste Disposal, Fluid/methods
2.
Environ Pollut ; 233: 364-376, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29096310

ABSTRACT

Recently, concerns have been raised that residues of glyphosate-based herbicides may interfere with the homeostasis of the intestinal bacterial community and thereby affect the health of humans or animals. The biochemical pathway for aromatic amino acid synthesis (Shikimate pathway), which is specifically inhibited by glyphosate, is shared by plants and numerous bacterial species. Several in vitro studies have shown that various groups of intestinal bacteria may be differently affected by glyphosate. Here, we present results from an animal exposure trial combining deep 16S rRNA gene sequencing of the bacterial community with liquid chromatography mass spectrometry (LC-MS) based metabolic profiling of aromatic amino acids and their downstream metabolites. We found that glyphosate as well as the commercial formulation Glyfonova®450 PLUS administered at up to fifty times the established European Acceptable Daily Intake (ADI = 0.5 mg/kg body weight) had very limited effects on bacterial community composition in Sprague Dawley rats during a two-week exposure trial. The effect of glyphosate on prototrophic bacterial growth was highly dependent on the availability of aromatic amino acids, suggesting that the observed limited effect on bacterial composition was due to the presence of sufficient amounts of aromatic amino acids in the intestinal environment. A strong correlation was observed between intestinal concentrations of glyphosate and intestinal pH, which may partly be explained by an observed reduction in acetic acid produced by the gut bacteria. We conclude that sufficient intestinal levels of aromatic amino acids provided by the diet alleviates the need for bacterial synthesis of aromatic amino acids and thus prevents an antimicrobial effect of glyphosate in vivo. It is however possible that the situation is different in cases of human malnutrition or in production animals.


Subject(s)
Amino Acids, Aromatic/metabolism , Gastrointestinal Microbiome/drug effects , Glycine/analogs & derivatives , Herbicides/toxicity , Animals , Bacteria , Environment , Glycine/toxicity , Homeostasis , Humans , Plants , RNA, Ribosomal, 16S , Rats , Rats, Sprague-Dawley , Glyphosate
3.
Water Res ; 123: 408-419, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28689125

ABSTRACT

Due to the limited efficiency of conventional biological treatment, innovative solutions are being explored to improve the removal of trace organic chemicals in wastewater. Controlling biomass exposure to growth substrate represents an appealing option for process optimization, as substrate availability likely impacts microbial activity, hence organic trace chemical removal. This study investigated the elimination of pharmaceuticals in pre-denitrifying moving bed biofilm reactors (MBBRs), where biofilm exposure to different organic substrate loading and composition was controlled by reactor staging. A three-stage MBBR and a single-stage reference MBBR (with the same operating volume and filling ratio) were operated under continuous-flow conditions (18 months). Two sets of batch experiments (day 100 and 471) were performed to quantify and compare pharmaceutical removal and denitrification kinetics in the different MBBRs. Experimental results revealed the possible influence of retransformation (e.g., from conjugated metabolites) and enantioselectivity on the removal of selected pharmaceuticals. In the second set of experiments, specific trends in denitrification and biotransformation kinetics were observed, with highest and lowest rates/rate constants in the first (S1) and the last (S3) staged sub-reactors, respectively. These observations were confirmed by removal efficiency data obtained during continuous-flow operation, with limited removal (<10%) of recalcitrant pharmaceuticals and highest removal in S1 within the three-stage MBBR. Notably, biotransformation rate constants obtained for non-recalcitrant pharmaceuticals correlated with mean specific denitrification rates, maximum specific growth rates and observed growth yield values. Overall, these findings suggest that: (i) the long-term exposure to tiered substrate accessibility in the three-stage configuration shaped the denitrification and biotransformation capacity of biofilms, with significant reduction under substrate limitation; (ii) biotransformation of pharmaceuticals may have occurred as a result of cometabolism by heterotrophic denitrifying bacteria.


Subject(s)
Bioreactors , Waste Disposal, Fluid , Biofilms , Denitrification , Wastewater
4.
Sci Total Environ ; 603-604: 219-225, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28628813

ABSTRACT

Antibiotics are frequently used in animals to treat sickness and prevent infection especially in industrial meat production. Some of the antibiotics cannot be completely metabolized and, as an unavoidable result, are excreted and thus end up in manure which is then spread in the environment. Currently increasing amounts of manure is used in biogas production before spreading the residuals on agricultural fields. In this study, the removal patterns of sulfonamides (sulfadiazine, sulfamethizole, sulfamethoxazole) and macrolides (clarithromycin, erythromycin), as well as trimethoprim, were investigated during the anaerobic digestion of pig manure. Batch kinetic tests were conducted both at thermophilic and psychrophilic condition for 40 days. Some of the antibiotics (clarithromycin, sulfadiazine, sulfamethizole) were persistent in all experiments. Thus, no biodegradation was found for sulfadiazine and sulfamethizole in this study. From the studied compounds, only erythromycin was clearly removed and probably degraded during anaerobic digestion with 99% and 20% removal under thermophilic and psychrophilic condition. The removal of erythromycin was fitted to a single first-order kinetic reaction function, giving reaction rate constant of 0.29day-1 and 0.005day-1, respectively.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Biodegradation, Environmental , Waste Disposal, Fluid , Anaerobiosis , Animals , Biofuels , Clarithromycin , Erythromycin/isolation & purification , Manure , Methane , Sulfadiazine , Sulfamethizole , Swine
5.
Environ Pollut ; 229: 362-370, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28609737

ABSTRACT

Phytoremediation of realistic environmental concentrations (10 µg L-1) of the chiral pesticides tebuconazole and imazalil by Phragmites australis was investigated. This study focussed on removal dynamics, enantioselective mechanisms and transformation products (TPs) in both hydroponic growth solutions and plant tissues. For the first time, we documented uptake, translocation and metabolisation of these pesticides inside wetland plants, using enantioselective analysis. Tebuconazole and imazalil removal efficiencies from water reached 96.1% and 99.8%, respectively, by the end of the experiment (day 24). Removal from the solutions could be described by first-order removal kinetics with removal rate constants of 0.14 d-1 for tebuconazole and 0.31 d-1 for imazalil. Removal of the pesticides from the hydroponic solution, plant uptake, within plant translocation and degradation occurred simultaneously. Tebuconazole and imazalil concentrations inside Phragmites peaked at day 10 and 5d, respectively, and decreased thereafter. TPs of tebuconazole i.e., (5-(4-Chlorophenyl)-2,2-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)-1,3-pentanediol and 5-(3-((1H-1,2,4-Triazol-1-yl)methyl)-3-hydroxy-4,4-dimethylpentyl)-2-chlorophenol) were quantified in solution, while the imazalil TPs (α-(2,4-Dichlorophenyl)-1H-imidazole-1-ethanol and 3-[1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-yl)ethoxy]-1,2-propanediol) were quantified in both solution and plant tissue. Pesticide uptake by Phragmites was positively correlated with evapotranspiration. Pesticide removal from the hydroponic solution was not enantioselective. However, tebuconazole was degraded enantioselectively both in the roots and shoots. Imazalil translocation and degradation inside Phragmites were also enantioselective: R-imazalil translocated faster than S-imazalil.


Subject(s)
Imidazoles/metabolism , Pesticides/metabolism , Poaceae/metabolism , Triazoles/metabolism , Biodegradation, Environmental , Chlorophenols , Hydroponics , Imidazoles/chemistry , Pesticides/chemistry , Plant Roots/metabolism , Propylene Glycol/metabolism , Triazoles/chemistry , Wetlands
6.
J Chromatogr A ; 1452: 116-20, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27234843

ABSTRACT

A simple method for the separation of the enantiomers of the fungicide imazalil was developed. Racemic imazalil was separated into its enantiomers with an enantiomeric purity of 99% using HPLC-UV with an enantioselective column (permethylated cyclodextrin) operated in reversed phase mode (water with 0.2% trimethylamine and 0.08% acetic acid and methanol). The absolute configuration of the separated enantiomers was assigned and unequivocally confirmed by optical rotation as well as by vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) combined with ab-initio calculations. The same enantioselective column was also used to develop an HPLC-MS/MS method for the quantification of imazalil enantiomers. The HPLC-MS/MS method reached limits of quantification (LOQs) of 0.025mg/mL with 5µL injections. This method was used to verify imazalil concentrations and enantiomeric fractions in samples from an in vitro test on effects on human steroidogenesis (H295R steroidogenesis assay). The quantification verified the stability of the enantiomers of imazalil during the in vitro tests.


Subject(s)
Imidazoles/chemistry , Imidazoles/isolation & purification , Toxicity Tests , Chromatography, High Pressure Liquid , Circular Dichroism , Fungicides, Industrial/analysis , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Fungicides, Industrial/toxicity , Humans , Imidazoles/analysis , Imidazoles/toxicity , In Vitro Techniques , Optical Rotation , Stereoisomerism , Steroids/biosynthesis , Tandem Mass Spectrometry , Vibration
7.
Water Res ; 83: 293-302, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26164801

ABSTRACT

Hospital wastewater represents a significant input of pharmaceuticals into municipal wastewater. As Moving Bed Biofilm Reactors (MBBRs) appear to remove organic micro-pollutants, hospital wastewater was treated with a pilot plant consisting of three MBBRs in series. The removal of pharmaceuticals was studied in two experiments: 1) A batch experiment where pharmaceuticals were spiked to each reactor and 2) a continuous flow experiment at native concentrations. DOC removal, nitrification as well as removal of pharmaceuticals (including X-ray contrast media, ß-blockers, analgesics and antibiotics) occurred mainly in the first reactor. In the batch experiment most of the compounds followed a single first-order kinetics degradation function, giving degradation rate constants ranged from 5.77 × 10(-3) to 4.07 h(-1), from -5.53 × 10(-3) to 9.24 × 10(-1) h(-1) and from 1.83 × 10(-3) to 2.42 × 10(-1) h(-1) for first, second and third reactor respectively. Generally, the highest removal rate constants were found in the first reactor while the lowest were found in the third one. This order was inverted for most compounds, when the removal rate constants were normalized to biomass, indicating that the last tank had the most effective biofilms. In the batch experiment, 21 out of 26 compounds were assessed to be degraded with more than 20% within the MBBR train. In the continuous flow experiment the measured removal rates were lower than those estimated from the batch experiments.


Subject(s)
Bacterial Physiological Phenomena , Biofilms/growth & development , Environmental Restoration and Remediation/methods , Pharmaceutical Preparations/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Bioreactors , Denmark , Hospitals , Pilot Projects , Wastewater/analysis
8.
Sci Total Environ ; 505: 39-46, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25306094

ABSTRACT

Aerobic degradation experiments of Triclosan were performed in activated sludge to identify possible transformation products for this compound. During 7 days, the formation of biotransformation products such as 2,4-Dichlorophenol, 4-Chlorocatechol, 5-Hydroxy-Triclosan and other Monohydroxy-Triclosan derivatives as well as Dihydroxy-Triclosan-derivatives were observed. The structure of 5-Hydroxy-Triclosan was elucidated by NMR data for the first time in sludge degradation experiments. Additionally the production of a hitherto unknown transformation product in sludge, i.e., Triclosan-O-Sulfate was detected. During the incubations, the concentrations of this transformation product changed from zero to 330 µg L(-1). Based on the analysis of the biodegradation products, three types of reactions were identified: 1) chemical scission of ether bond to form phenols and catechols, 2) addition of OH moieties to the aromatic ring, and 3) adding of methyl or sulfate groups to the original hydroxyl group.


Subject(s)
Anti-Infective Agents, Local/analysis , Environmental Monitoring , Triclosan/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Biotransformation , Sewage/chemistry
9.
Article in English | MEDLINE | ID: mdl-24911547

ABSTRACT

Antimalarial drugs commonly referred to as antimalarials, include a variety of compounds with different physicochemical properties. There is a lack of information on antimalarial distribution in the body over time after administration, e.g. the drug concentrations in whole blood, plasma, and urine, which must be improved in order to advance curing the parasitic disease malaria. A key problem also lies in that pharmacokinetic studies not always are performed in patient groups that may benefit most of the treatment such as children, pregnancy and lower-weight ethnic populations. Here we review the available sample preparation strategies combined with liquid chromatographic (LC) analysis to determine antimalarials in whole blood, plasma and urine published over the last decade. Sample preparation can be done by protein precipitation, solid-phase extraction, liquid-liquid extraction or dilution. After LC separation, the preferred detection tool is tandem mass spectrometry (MS/MS) but other detection methods have been used e.g. UV, fluorescence and electrochemical detection. Major trends for sample preparation of the different groups of antimalarials for each matrix and its detection have been summarized. Finally, the main problems that the researchers have dealt with are highlighted. This information will aid analytical chemists in the development of novel methods for determining existing antimalarials and upcoming new drugs.


Subject(s)
Antimalarials/blood , Antimalarials/urine , Drug Monitoring/methods , Antimalarials/chemistry , Chromatography, Liquid/methods , Dried Blood Spot Testing/methods , Humans , Liquid-Liquid Extraction/methods , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...